Friday, 23 September 2011

4.3 Equivalent Trigonometric Expressions

Determine equivalent trigonometric expressions using right angle triangle :

Example :
sinx = a/b 
∠C = π/2 – x

sin ∠C = c/b
cos ∠C = a/b 
tan ∠C = c/a

Therefore,
sinx = cos ∠C , sinx = cos (π/2 – x)



Use unit circle along with transformations to derive equivalent trigonometric expressions that form other trigonometric identities, such as cos(π/2 + x ) = -sin x


Trigonometric Identities Featuring π/2


sin x = cos (π/2 – x)
cos x = sin (π/2 – x)
sin (π/2 + x ) = cosx
cos (π/2 + x ) =-sinx
tan x = cot (π/2 – x )
cot x = tan (π/2 – x )
tan (π/2 + x ) =-cotx
cot (π/2 + x ) =-tanx
csc x = sec(π/2 – x)
sec x = csc(π/2 – x)
csc (π/2 + x ) =secx
sec (π/2 + x )=-cscx

No comments:

Post a Comment